10.5 米深水航道上延芜湖方案及航道应对措施*

王玉红

(长江芜湖航道管理处,安徽 芜湖 241000)

摘 要:随着《皖江城市带承接产业转移示范区规划》实施与国家内河高等级航道"十二五"建设正式启动,安徽省对深水航道的需求大增,10.5 米深水航道上延至芜湖呼声极大。本文分析芜南航段主要浅险水道情况,提出提高维护水深的方案及深水航道实施后航道应对措施。

关键词:长江航道;深水航道上延;内河高等级航道"十二五"规划;芜南段水道

中图分类号: U612 文献标识码: B 文章编号: 1672-9846(2011)03-0075-05

0 前言

近年来,国家高度重视内河航运特别是长江 航运发展,中央领导先后作出重要批示和指示,这 充分体现了中央领导的高瞻远瞩和深谋远虑,标 志着加快长江等内河航运发展已经得到党和国家 的高度重视,并上升到国家战略高度。2009年12 月,张德江副总理亲临长江调研内河航运发展情 况并作出重要指示,充分体现在全面建设小康社 会的关键时期,党和国家对长江航运的殷切期待。 2010年1月12日,国务院正式批准实施《皖江城 市带承接产业转移示范区规划》(简称《规划》), 核心内容为"一轴、双核、两翼","一轴"包括安 庆、池州、铜陵、巢湖、芜湖、马鞍山6个沿江城 市。2010年9月16日,交通运输部部长李盛霖 与安徽省委书记张宝顺、省长王三运等就贯彻落 实国务院批准的《规划》、加快推进示范区交通运 输发展交换意见并签署会谈纪要。2011年3月 24日,国务院副总理张德江宣布国家内河高等级 航道"十二五"建设正式启动,标志着今后一段时 期,我国将以建设畅通的高等级航道为重点。

随着长江沿江经济发展迅速,长江水运市场呈现良好的态势,特别是实施《规划》,安徽省经

济发展快速,进入安徽段的船舶日流量高达 2000 艘左右,且日趋大型化,对航道需求更高。2010 年皖江主要港口吞吐量:芜湖港为 6609.4 万吨、马鞍山港 4825.6 万吨、巢湖港 4434.94 万吨、铜陵港为 3914 万吨、池州港为 2576.1 万吨、安庆港为 2810 万吨。

- 1 长江干线芜湖至南京段概况及航标现状
- 1.1 芜南段水道概况

南京(燕子矶,长江下游航道里程 336.8 公里)至芜湖(高安圩,长江下游航道里程 475 公里)河段(简称芜南段)全长 138.2 公里。本河段自上而下共有 10 个水道,分别为白茆、芜湖、芜湖大桥、西华、江心洲、马鞍山、凡家矶、乌江、南京、南京大桥水道。该段河道宽阔,流路曲折,汊河发育,洲滩众多,河道宽度除局部窄段外,一般都在 1 公里以上。汊道繁多是本河段河道的显著特征,局部宽阔河段,由于水流分散,江中多滩,常形成两支或多支分汊河道。

1.2 芜南段航标现状

目前,芜湖至南京段共设置航标 206 座,其中,岸标 42 座,水标 164 座。浮标分别采用 φ 2400mm 钢质浮鼓和 10 米标志船,桥区及重要

^{*}收稿日期:2011-05-31

作者简介:王玉红(1970一),男,安徽芜湖人,长江芜湖航道管理处航道科科长,主要从事航道维护管理、航道行政管理研究。

标位采用 15 米灯船;岸标分别采用钢筋混凝土、玻璃钢或钢质结构塔型、罐形岸标;灯器和电源采用 LED 冷光源航标灯。南京至芜湖段航标为一类航标配布,双侧连续配布。同侧航标配布间距水标不大于 2.5 公里,个别重点、桥区、弯曲航段位置标志配布密度较大;岸标间距不大于 3.5 公里。

1.3 芜南段航行规则

2005 年 10 月 1 日起,该段主航道实行船舶 定线制,遵循大船小船分流、避免航路交叉,船舶 按各自靠右航行原则航行。

1.4 长江下游航道维护尺度

长江航道维护尺度实施分段分月维护,详见 长江中下游各河段航道维护尺度表(见表 1)。

月份	分月维护水深(米)											
主航道		2	3	4	5	6	7	8	9	10	11	12
武汉长江大桥——安徽安庆(皖河口)	4.0	4.0	4.0	4.5	5.0	6.0	6.0	6.0	6.0	5.0	4.5	4.0
安庆皖河口——芜湖长江大桥	5.0	5.0	5.0	6.0	6.0	7.5	7.5	7.5	7.5	6.0	6.0	5.0
芜湖长江大桥——南京(燕子矶)	7.5	7.5	7.5	7.5	7.5	9.0	9.0	9.0	9.0	7.5	7.5	7.5
南京(燕子矶)——江苏江阴(鹅鼻嘴)	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5
江阴(鹅鼻嘴)——江苏太仓(荡茜闸)	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5
太仓(荡茜闸)——太仓(浏河口)	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5

表 1 长江下游各河段航道维护尺度

2 芜南段主要浅险水道概况

芜南段河道具有长江下游河道典型特征:河道宽阔、流路曲折、汊河发育、洲滩众多、汊道众多。主要浅险水道有江心洲、乌江、白茆水道。这些浅滩主要出现在枯水期。

2.1 江心洲水道

该水道是长江下游重点浅水道之一,上起东 西梁山,下迄人头矶,主航道全长26 km,长江下 游航道里程为 399 至 425 公里,为分汊型河道。 东西梁山节点控制着本水道的发展,东梁山以下 骤然展宽,最宽处达8公里,沿程罗列有彭兴洲、 江心洲、泰兴洲、何家洲、小黄洲等将水道一分为 二,左汊为主汊称江心洲水道,该水道上段河身顺 直、和洲以下河道弯曲呈70度,水流横压洲头,小 黄洲再分左汊水流,洲头迎流顶冲。七十年代构 筑分水鱼嘴及抛石护岸,目前右缘崩冲没有完全 停止,原江心洲缓流航道一侧因何家洲边滩冲失, 河床冲深,在何家洲尾江心洲左右汊水流汇合沿 小黄洲右汊下泄。江心洲右汊为支汊,称太平府 水道,河道弯曲,上下口均可通航,彭兴洲对开有 进口浅滩。左汊历年分流比保持在 90 % 上下。 江心洲水道虽10米等深线贯通,最小宽度为330 米左右,但165 # 红灯船附近主航道内心滩逐步 形成;马鞍山长江公路大桥至东埂过渡段水深变 化较大,历史上该段 10 米线曾断开。根据 2011 年 5 月份测图分析,168 # 红灯船附近主航道内存 在 8.4 米(航基面)浅点。

2.2 白茆水道

该水道位于芜湖市上游,上起山西嘴,下迄高安圩,主航道全长约 26km,长江下游航道里程为449 至 475 公里。其上游为黑沙洲水道,下游为芜湖水道。该水道承接黑沙洲汊道汇流,深泓傍右岸过保定圩以后逐渐向左岸过渡。三坝以下深泓傍左岸。长江在蛟矶上游形成一急转弯,转弯角度 95 度左右,转弯半径 2 公里左右,转弯角度 大,半径小,河道在此走向由东西向拐为南北向,左岸山西嘴突出,为河道急拐弯的顶部。该水道虽10 米线贯通,但保定圩至汤沟一带过渡段水深变化较大。根据 2010 年 7 月份测图分析,该水道10 米线最窄处为 290 米;同年 12 月测图分析,该水道10 米线最窄处缩为 160 米。

2.3 乌江水道

1956 年至 1994 年间为主航道,后乌江水道 礁石附近潜滩迅速淤涨,乌江水道深槽河床萎缩,至 1994 年已不能正常通航,于当年底封航,凡家 矶水道辟为主航道。乌江水道自 2000 年以来又 出现冲刷发展,至 2004 年,已初步具备通航条件。2005 年 3 月,长江芜湖航道处测量队对乌江

水道施测水下地形测量,通过测图分析,该水道 6 米等深线贯通,最小宽度超过 200 米。2005 年 10 月 1 日,该水道重新开放为副航道,上行船舶通 行。目前,该水道 6 米等深线贯通、最小宽度维持 在 200 米左右。

3 10.5 米深水航道上延至芜湖方案

由于长江是一条季节性河流,洪、枯水位相差较大,相差最大年份芜湖水位达 9.51 米。根据航道条件和水位情况,长江航道实施分月维护来提

高该段航道维护水深是切实可行的。遇特殊年份超低水位,提前一月按实际公布下月维护水深。提高维护水深必将给水运企业带来巨大的经济效益,同时产生巨大社会效益和影响力。目前,芜湖高安圩以下 10 米等深线贯通,最小宽度达到 100米以上;芜湖长江大桥以下 10 米等深线最小宽度为 300 米左右。

3.1 1998 年以来长江芜湖水位(航基面)2 米以下统计情况(见表 2)

表 2 1998 以来芜湖地区水位(2米以下)统计表

年份	低水位 2~1 米天数	低水位1米以下天	最低水位时	低于2米			
+10	时间		时间	天数	时间	最低值	总天数
2011年1-5月	元月1日至2月13日、2月17日至5月22日	139 天	2月14日至16日	3 天	2月14日	0.40 米	142 天
2010 年	元月1日至11日、 元月16日至24日、元月26日、 元月30日至2月11日、 2月20日至3月3日、 11月17日至12月20日、12月31日	80 天	元月 12 日至 15 日、 元月 25 日、 元月 27 至 29 日	8天	元月 27 日	0.59 米	88 天
2009 年	元月1日至9日、元月11日至20日、 元月28日至2月4日、2月10日至19日、 2月24日至27日、10月17日至11月9日、 11月14日至12月29日、12月31日	112 天	元月10日、 元月21日至27日、 2月5日至9日、 2月20日至23日、 12月30日	18 天	元月 25 日	0.45 米	130 天
2008 年	元月 10 日至 17 日、元月 19 日至 31 日、 2 月 6 日至 28 日、3 月 8 日至 15 日、 3 月 20 日至 26 日、12 月 20 日至 31 日	63 天	元月1日至9日、 元月18日、 2月1日至5日、 2月28日至3月7日、 3月16日至19日	22 天	元月3日	0.39 米	85 天
2007 年	元月1日至4日、元月4日至7日、 元月10日至13日、元月20日至2月10日、 2月17日至3月5日、5月25日至27日、 11月17日至12月7日、12月10日至30日	92 天	元月2日至3日、 元月8至9日、 元月14日至19日、 2月11日至16日、 12月7至9日、 12月31日	20	2月15日	0.57 米	112 天
2006 年	元月1日至9日、元月14至20日、 元月22至30日、2月3日至7日、 2月13至27日、10月2日至22日、 11月11日至12月4日、12月11日至31日	111 天	元月 10 日至 13 日、 2 月 8 日至 12 日	9天	2月10日	0.61 米	120 天
2005 年	元月 1 日至 20 日、元月 24 日至 2 月 13 日、 3 月 20 至 21 日、12 月 13 日至 31 日	62 天	元月 21 日至 23 日	3 天	元月 21 日	0.76 米	65 天
2004 年	元月 1 日、元月 8 至 19 日、 元月 22 至 28 日、3 月 6 日至 11 日、 12 月 7 日、12 月 9 至 31 日	50 天	元月2日至8日、 元月20日至21日、 元月29日至3月5日	48 天	2月7日	0.27 米	98 天

2003 年	元月 14 日至 18 日、元月 23 日、 元月 26 至 2 月 1 日、2 月 11 日至 16 日、 11 月 23 日、11 月 30 日至 12 月 31 日	51 天			12月31日	0.78	51 天
2002 年	元月1日至6日	6 天	元月7日至3月6日	58 天	2月24日	0.56 米	64 天
2001 年	元月1至3月25日	47 天			3月6日	1.46 米	47 天
2000 年	元月1日、元月7月至2月14日、 12月21日至31日	51 天	元月2至6日、 2月15日至17日	8 天	2月16日	0.79 米	59 天
1999 年	3月18日至4月17日、12月14至31日	47 天	元月1日至3月27日	79 天	3月1日	0.20 米	126 天
1998 年	11月21至12月12日	22 天	12月13至31日	19 天	12月29日	0.59 米	41 天

(注:水位统计为每日8时水位值,没有统计高、低潮水位)

从表 2 可见,芜湖水位低于 2 米的时间一般在 12 月至来年的 3 月份,特殊年份甚至维持至 5 月下旬,时间有长有短,一般短的有 40 天,最长超过 140 天以上,近几年低水位持续时间明显偏长。3.2 跨江桥梁

该段建成的跨江桥梁有:南京长江大桥、南京长江三桥、芜湖长江大桥(除南京长江三桥通航净空高度为 32 米外,其余桥梁均为 24 米),在建的有马鞍山长江公路大桥和南京大胜关长江大桥(通航净空高度均不低于 32 米)。芜湖长江大桥通航水位为 20 年一遇标准。南京长江大桥通航水位值为 6.3 米(航基面),该水位值仅相当于 3年一遇标准。1998 年超过水位的数值就达到 87天,也就是说不足 24 米净空高度的天数,如果加上安全系数,船舶水面以上高度不超过 23 米,才能安全通过南京长江大桥。海船通航主要限制于南京长江大桥的通航净空高度。

3.3 代表船型

根据长江下游水运发展形势及结构变化,安徽段江海轮直达运输船舶发展较快,同时受沿江地区经济发展及货物种类、流向控制,主要货物有煤炭、石油、石油化工原料、液化气、钢材、水泥、矿石、黄砂、木材及件杂货种类。经调查,进入安徽段主要江海直达一万吨级以上海船船型尺度见表3和表4。

炜伦 6 号轮为万吨级船舶,满载吃水 5.65 米,满载吃水时水面高度 14.35 米,船舶水线以 上高度较小。满江海作为 1.5 万吨级船舶,该轮 总高 32.7 米,满载吃水 7.5 米。满载吃水时水面 以上高度为 25.2 米,空载时船舶水面以上高度在 28 米左右。这些海船在中洪水期通过南京长江 大桥、芜湖长江大桥,空载时考虑好压载与当地水 位,是没有问题的。1.5万吨以上海船由于水线以上较高,只有在中枯水采取眠桅等措施方能通过南京长江大桥。

表 3 江海轮船型尺度调查表

60.47	总长	型宽	型深	总高	载重吨位	满载吃水
船名	(m)	(m)	(m)	(m)	(DWT)	(m)
炜伦 6 号	103.8	25	7.5	20	10200	5.65
宝英海1号	134.17	34	9.5	眠桅后 28.4	10712	7.1
炜伦 10 号	139.80	20.00	10.10	眠桅后 27.1	13146	7.5
炜伦 11 号	139.80	20.00	10.10	眠桅后 26.8	13177	7.50
三江源 88 号	141.0	20.5	10.5	眠桅后 30	13900	8.0
满江海	153.0	23.0	11.0	32.7	15977.5	7.5
润捷 208	149.70	21.00	11.50		16662	8.45
炜伦 216	159.00	23.00	12.10	35.9	21058	9.0
炜伦 218	159.60	23.80	13.00		21974	9.3

表 4 散货船船型尺度调查表

船名	载重吨	船长	船宽 型深		满载吃水	船舶高度	备注	
苏育轮	10000 吨	145.37	19.44	11.31	8.91	37.8	龙骨~桅杆	
江夏文号	11000 吨	128	21.6	9.4	7			
苏芸轮	12800 吨	150	21.8	11.9	9.0	40.0	龙骨~桅杆	
华阴	15000 吨	139.5	21	13.3	9.1	37.1	龙骨~桅杆	
赣江	16000 吨	155.5	21.6	12.4	9.3	39	龙骨~桅杆	
华海	16600 吨					37.12	空载水面以上	

3.4 提高水深方案

3.4.1 芜湖长江大桥至南京(燕子矶)段(暂不考虑 南京大桥净空高度的制约)

洪水期(6至9月):每年6月至9月为长江主汛期,水位高,芜湖水位大多数年份维持在5米以上,主航道维护水深可提高至10.5米,满足肥大型和具有眠桅功能的3万吨级船舶通航。

中、枯水期 $(1 \times 5 \mid f|, 10 \times 12 \mid f|)$:该段时间长江水位相对较低,航道条件较差。主航道维护水深可提高至 8.5×1 ,满足万吨级船舶通航。

乌江水道作为上行船舶通行的副航道,目前尚 不十分稳定,在没有对该水道进行系统整治之前,中 枯水期 $(1 \, \Xi \, 5 \, \Pi, 10 \, \Xi \, 12 \, \Pi)$: 航道维护水深保持不变为 $4.5 \, \text{米}$; 其它月份维护水深 $5.5 \, \text{米}$, 分流上行 $5000 \,$ 吨级的船舶。

3.4.2 芜湖长江大桥至芜湖(高安圩)段

洪水期(6至9月):6月至9月为长江主汛期, 水位较高,芜湖水位大多维持在5米以上,该段主航 道维护水深可提高至9.0米,满足万吨级船舶通行。

中水期(4、5、10 月):每年 4、5 月、10 月为中水期,该段长江芜湖水位大多数维持在 3-5 米,特殊年份芜湖水位维持在 2 米以下。该段主航道维护水深可提高至 7.5 米,满足于万吨级船舶通航。

枯水期(1至3月、11、12月):该段时间长江水位退至每年最低,芜湖水位维持在1米左右,甚至更低,历史上芜湖水位(航基面)曾出现负值,航道条件极差。主航道维护水深可提高至6.0米,满足5千吨级船舶通航。

4 深水航道上延后航道应对

4.1 加强雨情、水情收集与分析

低水位(特别是枯水期)时,航道生产技术人员要加大对雨情、水情收集,通过向气象部门咨询、网络查找资料等综合分析,判断降雨量和水位大致的涨落趋势,供管理人员和航道艇参考,以决定调标、改槽;同时在枯水期生产技术人员应每天及时将水位传达给下属航道艇。

4.2 加大对浅险水道的测量、探测力度与分析,及时调标改槽

该航段主要浅险水道有:白茆、江心洲、乌江水 道。保定圩至汤沟段、马鞍山长江大桥至东埂段、 165 # 红灯船处及乌江河口段变化较大。航道船艇 应严格按照"长江南京航道局航标工作规定实施细 则"的要求,做好对浅险水道三线水深的探测,当航 宽达 2 倍标准宽度,实际水深达计划维护水深加 1 米时,每3天测报一次;当航宽接近标准宽度,实际 水深达计划维护水深加 0.5 米时,每天测报一次;当 航道浅区出现激烈变化时,应增加探测次数或进行 草测或进行简测,必要时每天测报二次;并根据水位 的变化,及时调整标志,确保航道维护尺度。当主航 道实际水深在维护水深加1米时,测量船应加大对 浅险水道的测量次数,由通常一季度一测次改为一 月一次。水位持续退落时,测量船应对浅区 10 天施 测一次浅区,及时掌握泥沙演变规律,供管理人员决 策和航道调标改槽参考。在采取调标措施无法保证 维护水深时,可申请挖泥船进行维护性疏浚。

4.3 加强航道维护管理力度,改变工作方式

由于航道维护尺度(水深)提高后,航宽必然缩窄,航标被碰频率增加,航道维护工作量急剧加大。 航标艇坚持守漕制度。特殊水位时,生产技术人员 随船工作,加大巡航检查次数和探测频次。在枯、洪 水期进行超常规的维护,确保航道安全、畅通。

4.4 标志大型化

目前,芜湖高安圩以下浮标以 10 米单船为主,配布少量的 2400 浮鼓和 15 米灯船。由于水深提高,航标处于深水区,浮标应采用 2400 浮鼓和 15 米灯船为主,重点河段配布 3050 浮鼓,以减少船舶碰撞航标的机率。重点标志上安装雷达应答器或雷达反射器。

5 存在的主要问题及建议

第一,由于大气候的变化,极端天气频发,几十年一遇甚至百年一遇的低水位时常发生,2010至2011届皖江枯水期竟超过7个月。浅、险水道没有进行系统的整治之前,在特殊年份,洪、中、枯水位变化有可能导致浅、险水道航道维护水深达不到规定尺度。航道部门除了采取维护性疏浚外,还应根据水位退落情况合理公布航道维护尺度。

第二,加快对该段乌江、江心洲等浅水道进行系统整治,束水攻沙。

第三,利用 GPS 定位技术、GIS 地理信息技术、 网络信息传输技术、计算机技术及相关成熟的系统 软件,建立航标遥测监视系统,使航标位置、航标灯器、电源的工作状态 24 小时全天候处在监视中,提 高航标正常率,增强其可靠性,从而提高航标维护管 理现代化水平。一旦航标失常,迅速遥报,管理者及 时处理故障。重点河段、桥区水域实施可视化航道。

第四,改善航道基础设施和增加一线维护人员。由于航道维护水深的提高,航道艇的维护工作量成倍增长,航道维护难度加大,原维护手段更显滞后。基层航道管理处应配备大型航标工作船、钢质快艇、便携式测深仪等设备,同时加大巡查、检查力度、提高应急处理能力,并建造大型浮标维修、存放的航标基地,并且要增加一线维护人员数量。

第五,对南京长江大桥进行改造,使其符合现代 航运快速发展的需要。

第六,2005 年 10 月 1 日,芜湖高安圩至南京燕子矶河段实施了芜南段航标建设工程,芜南段的岸标建设时没有考虑树木高度,以致不少岸标被树木遮挡,岸标应加高至 20 米左右以利于船舶引用。